Média móvel Este exemplo ensina como calcular a média móvel de uma série temporal no Excel. Uma média móvel é usada para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossa série de tempo. 2. No separador Dados, clique em Análise de dados. Nota: não é possível encontrar o botão Análise de dados Clique aqui para carregar o suplemento do Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Input Range e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e escreva 6. 6. Clique na caixa Output Range e seleccione a célula B3. 8. Faça um gráfico destes valores. Explicação: porque definimos o intervalo como 6, a média móvel é a média dos 5 pontos de dados anteriores eo ponto de dados atual. Como resultado, os picos e vales são suavizados. O gráfico mostra uma tendência crescente. O Excel não consegue calcular a média móvel para os primeiros 5 pontos de dados porque não existem pontos de dados anteriores suficientes. 9. Repita os passos 2 a 8 para o intervalo 2 eo intervalo 4. Conclusão: Quanto maior o intervalo, mais os picos e vales são suavizados. Quanto menor for o intervalo, mais próximas serão as médias móveis dos pontos de dados reais. Usando o MATLAB, como posso encontrar a média móvel de 3 dias de uma coluna específica de uma matriz e anexar a média móvel àquela matriz que estou tentando calcular A média móvel de 3 dias de baixo para cima da matriz. Eu forneci o meu código: Dada a seguinte matriz a e máscara: Tentei implementar o comando conv, mas estou recebendo um erro. Aqui está o comando conv que eu tenho tentado usar na segunda coluna da matriz a: A saída que desejo é dada na seguinte matriz: Se você tiver alguma sugestão, eu gostaria muito. Obrigado Para a coluna 2 da matriz a, estou computando a média móvel de 3 dias da seguinte maneira e colocando o resultado na coluna 4 da matriz a (I renomeado como a matriz 39 como 39desiredOutput39 apenas para ilustração). A média de 3 dias de 17, 14, 11 é 14 a média de 3 dias de 14, 11, 8 é 11 a média de 3 dias de 11, 8, 5 é 8 ea média de 3 dias de 8, 5, 2 é 5. Não há nenhum valor nas 2 linhas inferiores para a 4a coluna porque a computação para a média móvel de 3 dias começa na parte inferior. A saída 39valid39 não será mostrada até pelo menos 17, 14 e 11. Espero que isso faz sentido ndash Aaron Jun 12 13 em 1:28 Em geral, seria útil se você mostrar o erro. Neste caso você está fazendo duas coisas erradas: Primeiro, sua convolução precisa ser dividida por três (ou o comprimento da média móvel) Segundo, observe o tamanho de c. Você não pode apenas caber c em um. A maneira típica de obter uma média móvel seria usar o mesmo: mas isso não se parece com o que você quer. Em vez disso você é forçado a usar um par de linhas: Ive tem um vetor e eu quero calcular a média móvel dele (usando uma janela de largura 5). Por exemplo, se o vetor em questão for 1,2,3,4,5,6,7,8. Então a primeira entrada do vetor resultante deve ser a soma de todas as entradas em 1,2,3,4,5 (ou seja, 15) a segunda entrada do vetor resultante deve ser a soma de todas as entradas em 2,3,4, 5,6 (ie 20) etc. No final, o vector resultante deve ser 15,20,25,30. Como posso fazer isso? A função conv está bem no seu beco: Três respostas, três métodos diferentes. Aqui está um benchmark rápido (diferentes tamanhos de entrada, largura de janela fixa de 5) usando timeit sinta-se livre para picar buracos nele (nos comentários), se você acha que precisa ser refinado. Conv surge como a abordagem mais rápida é cerca de duas vezes mais rápido que a aproximação moedas (usando filtro). E cerca de quatro vezes mais rápido que Luis Mendos abordagem (usando cumsum). Aqui está outro benchmark (tamanho de entrada fixo de 1e4. Largura de janela diferente). Aqui, Luis Mendos cumsum abordagem surge como o vencedor claro, porque a sua complexidade é principalmente governada pelo comprimento da entrada e é insensível à largura da janela. Conclusão Para resumir, você deve usar a abordagem conv se sua janela é relativamente pequena, use a abordagem cumsum se sua janela é relativamente grande. Código (para benchmarks)
No comments:
Post a Comment